ВЛИЯНИЕ ПРИЕМОВ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН НА ПРОДУКТИВНОСТЬ СОИ

Васина Александра Александровна, канд. с.-х. наук, доцент кафедры «Растениеводство и селекция» ФГБОУ ВПО «Самарская государственная сельскохозяйственная академия».

446442, Самарская обл., пгт. Усть-Кинельский, ул. Учебная, 2.

Тел.: 8(84663) 46-1-37.

Рязанова Елена Владимировна, аспирант кафедры «Растениеводство и селекция» ФГБОУ ВПО «Самарская государственная сельскохозяйственная академия».

446442, Самарская обл., пгт. Усть-Кинельский, ул. Учебная, 2.

Тел.: 8(84663) 46-2-44.

Васин Александр Васильевич, канд. с.-х. наук, доцент кафедры «Растениеводство и селекция»

ФГБОУ ВПО «Самарская государственная сельскохозяйственная академия».

446442, Самарская обл., пгт. Усть-Кинельский, ул. Учебная, 2.

Тел.: 8(84663) 46-1-37.

Ключевые слова: соя, обработка, семена, ризоторфин, биостимуляторы, полнота, сохранность, урожайность, структура.

В статье приводятся результаты исследований по оценке полноты всходов, сохранности и продуктивности сои сорта Соер 4 при использовании ризоторфина и других стимуляторов роста в предпосевной обработке семян.

Анализ современного производства кормов и состояния животноводства в России показывает, что обеспеченность поголовья скота кормовым белком ниже нормы в 1,3-1,5 раза. Решение проблемы дефицита кормового белка возможно при увеличении посевных площадей, урожайности и качества зернобобовых культур, среди которых особое место занимает соя. Эта культура отличается высоким содержанием не только белка (до 45%), но и жира (до 25%), поэтому она находится в постоянном поле зрения как ученых, так и практиков (Вавилов П. П., Посыпанов Г. С., 1983, Кутузова А. А., Новоселов Ю. К., Гарист А. В., 1984; Бабич А. А., 1997; Столяров О. В., 2000; Дозоров А. В., 2000; Фицев А. И., 2004; Проживина Н., 2005; Федоренко В., Буклагин Д., Аронов Э., 2005).

В последние годы заметно возросло значение сои как поставщика высококачественного растительного белка, по своему составу близкого к белку животному. Использование сои в качестве кормов в животноводстве (шрот, необезжиренные бобы, мука) обеспечивает белковую сбалансированность концентрированных кормов и тем самым существенно повышает эффективность животноводства. Потребность в соевых бобах пищевой и комбикормовой промышленности Самарской области уже сейчас составляет 25-35 тыс. т, а с учетом развития животноводства в ближайшие годы достигнет 50 тыс. т (Зубков В. В., 2003).

Поэтому весьма важным является изучение особенностей формирования урожая сои сорта Соер 4 при различных уровнях минерального питания и приемах предпосевной обработки семян с использованием ризоторфина, микроэлементов и стимуляторов роста.

Цель исследований – повышение продуктивности сои сорта Соер 4 в зависимости от применения удобрений и различных приемов предпосевной обработки семян в неорошаемых условиях лесостепи Среднего Поволжья.

Задача исследований – изучить влияние различных приемов предпосевной обработки семян с использованием ризоторфина, микроэлементов и стимулятора роста и минерального питания на формирование, структуру и величину урожая сои.

Условия и методика опыта. Посев проводился в оптимальный срок, норма высева 600 тыс. всх. сем./га, посев широкорядный с междурядьем 45 см. Под опыт вносился почвенный гербицид харнес в дозе 3 кг/га. Опыт содержался в чистоте.

Повторность опыта четырехкратная. Площадь делянки 44 м².

Полевые опыты в 2007-2010 гг. закладывались в кормовом севообороте кафедры растениеводства и селекции Самарской государственной сельскохозяйственной академии. Почва опытного участка – чернозем обыкновенный остаточно-карбонатный среднегумусный среднемощный тяжелосуглинистый.

Агротехника включала в себя лущение стерни, отвальную вспашку, боронование, внесение удобрений (P₆₀ K₆₀), предпосевную культивацию на глубину 8-10 см и предпосевную обработку семян препаратами ризоторфин штамм 24100 (200 г/т), тенсо-коктейль (150 г/т) и гумат калия/натрия с микроэлементами (10 л/т). Посев проводился сеялкой СН-16Б с перекрытием сошников широкорядным способом. Варианты опыта предусматривали использование посевов на зернофураж.

Результаты исследований. В период исследований были благоприятные (2007, 2008 гг.), засушливый (2009 г.), а так же крайне сухой (2010 г.) годы.

Проведенные исследования в 2007-2010 гг. по изучению влияния удобрений и предпосевной обработки семян сорта Соер 4 на особенности формирования агрофитоценоза, урожайность и кормовые достоинства позволили выявить следующие особенности.

Полнота всходов – важнейший показатель, в сильной степени влияющий на будущий урожай. В среднем за четыре года полнота всходов была на достаточно высоком уровне для формирования полноценного урожая, приблизительно одинаковой по всем вариантам обработки семян, с разницей по опыту не более 5,1% (табл. 1). В контрольном варианте снижение полноты всходов было обусловлено гибелью всходов от весеннего заморозка в 2008 г.

В среднем без применения удобрений полнота всходов составила 80,1%, с применением удобрения $P_{60}K_{60}-81,1\%$, на варианте с применением Γ кNa с микроэлементами + ризоторфин она была наиболее высокой -86,5%.

Таблица 1 Полнота всходов сои сорта Соер 4 в зависимости от удобрений и предпосевной обработки семян, %, 2007-2010 гг.

	Варианты	Кол-во растений, шт./м ²	Полнота всходов, %	
Без удобрений	Контроль	34,8	58,0	
	Ризоторфин	46,8	78,0	
	Тенсо-коктейль	46,6	77,7	
	Ризоторфин + тенсо-коктель	48,7	81,2	
	ГкNа с микроэлементами	50,4	74,0	
	ГкNa с микроэлементами + ризоторфин	51,9	86,5	
P ₆₀ + K ₆₀	Контроль	36,4	60,7	
	Ризоторфин	48,8	81,3	
	Тенсо-коктейль	48,6	81,0	
	Ризоторфин + тенсо-коктейль	47,6	79,3	
	ГкNa с микроэлементами	48,7	81,2	
	ГкNа с микроэлементами + ризоторфин	49,7	82,8	

Лучшая сохранность растений была получена на варианте без внесения удобрений с обработкой семян ГкNa с микроэлементами + ризоторфин, которая составила 88,2%. На фоне с внесением минеральных удобрений она равнялась 88,1% (табл. 2).

Осень 2008 г. была затяжной и дождливой, поэтому созревание сои проходило медленно. Август 2007, 2009 и 2010 гг. был более жарким и сухим, благодаря чему уборка сои проведена в довольно ранние сроки. Полной спелости семена достигли на контроле (без внесения минеральных удобрений) в 2007 г. на 110, в 2009 г. на 107 день. Обработка семян ризоторфином и ризоторфин + тенсо-коктейль задержали наступление спелости по сравнению с контролем, для достижения полной спелости сои потребовалось 111, 114, 107 и 106 дней соответственно в 2007, 2008, 2009 и 2010 гг.

Варианты		Густота стояния растений, шт./м²	Сохранность, %	
×z	Контроль	35,4	61,7	
удобрений	Ризоторфин	49,6	82,8	
	Тенсо-коктейль	49,5	87,3	
Удо	Ризоторфин + тенсо-коктель	49,6	84,6	
Pe3	ГкNa с микроэлементами	49,9	85,7	
Б	ГкNa с микроэлементами + ризоторфин	51,1	88,2	
	Контроль	35,4	64,9	
K 60	Ризоторфин	49,8	85,8	
+ X	Тенсо-коктейль	50,2	87,2	
Р 60	Ризоторфин + тенсо-коктейль	51,2	86,6	
	ГкNa с микроэлементами	50,4	87,1	
	ГкNa с микроэлементами + ризоторфин	50,8	88,1	

Анализ динамики линейного роста выявил, что самыми высокими растениями к уборке на вариантах без внесения удобрений в фазу образование бобов - восковая спелость был вариант ризоторфин + тенсококтейль 93,1 см, а самый низкий был контрольный вариант 88,0 см. На фоне применения удобрений (P_{60} K_{60}) самой большой длиной стебля, в фазу образование бобов – восковая спелость отличался вариант ризоторфин + тенсо-коктейль, достигая 99,5 см, а вариант с обработкой семян тенсо-коктейлем – 94,7 см. Умеренно влажные и теплые весна и лето 2007, 2008 гг. способствовали высоким темпам роста растений. Прирост растений сои на всех вариантах был в пределах 1,0-1,5 см/сут. В среднем за четыре года исследований среднесуточный прирост оказался на вариантах без внесения удобрений в фазу всходы - бутонизация 1,2 см/сут и лишь на контрольном варианте среднесуточный прирост растений был немного ниже 1,1 см/сут. К фазе бутонизация – цветение среднесуточный прирост растений оказался на уровне 1,1-1,5 см/сут. В фазу цветение – образование бобов прирост растений составил в контроле 1,3 см/сут, при этом наименьший прирост растений наблюдался на варианте с обработкой семян ризоторфином -1,1 см/сут. На фоне минерального питания (P_{60} K_{60}) в фазу всходы – бутонизация среднесуточный прирост на всех вариантах обработки семян составил 1,3 см/сут за исключением контрольного варианта (без обработки семян) и варианта с ризоторфином 1,2 см/сут. К фазе бутонизация – цветение среднесуточный прирост растений оказался на одном уровне 1,3 см/сут. В фазе образование бобов – восковая спелость среднесуточный прирост растений сои на всех вариантах был 1,0 см/сут.

Важнейшим критерием оценки урожая является его структура. Анализ четырехлетних данных показал, что количество растений к уборке колеблется от 31,3 до 45,8 шт./м². Минимальное их число составило 31,3 шт./м² (контроль). На фоне с минеральными удобрениями (P_{60} K_{60}) максимум достигается на варианте с Γ к N_{60} с микроэлементами + ризоторфин – 44,0 шт./м², наименьшее количество растений наблюдалось в контрольной группе – 31,6 шт./м² (табл. 3).

Без внесения удобрений, количество бобов на растение к моменту уборки составило 11,8-19,7 шт. При внесении фосфорных и калийных удобрений по 60 кг действующего вещества, число бобов находилось в пределах от 11,3 до 19,2 шт.

Таблица 3 Структура урожая сои сорта Соер 4 в зависимости от удобрений и предпосевной обработки семян, 2007-2010 гг.

Варианты		Кол-во растений, шт./м²	Кол-во бобов на	Кол-во зерен	Macca 1000
		кол-во растении, шт./м	1 растение, шт.	в бобе, шт.	семян, г
Без удобрений	Контроль	31,3	11,8	1,8	128,0
	Ризоторфин	38,7	19,7	2,7	166,8
	Тенсо-коктейль	40,7	16,8	2,4	166,6
	Ризоторфин +тенсо-коктель	41,3	17,3	2,5	174,4
	ГкNa с микроэлементами	43,1	14,8	2,6	171,0
	ГкNa с микроэлементами+Ризоторфин	45,8	19,0	2,6	164,3
P 60 + K60	Контроль	31,6	11,3	1,9	131,0
	Ризоторфин	41,8	19,1	2,5	173,5
	Тенсо-коктейль	42,5	17,8	2,5	177,5
	Ризоторфин+ тенсо-коктейль	43,3	16,5	2,7	168,6
	ГкNa с микроэлементами	42,5	15,7	2,5	175,5
	ГкNa с микроэлементами+Ризоторфин	44,0	19,2	2,5	166,1

Количество зёрен в бобе на всех вариантах колебалось в пределах 2,4-2,8 шт. Наиболее выполненными (без внесения минеральных удобрений) были семена на варианте ризоторфин + тенсо-коктейль M_{1000} -174,4 г. Незначительно ниже (M_{1000} 171,0 г) получены показатели на варианте применения Γ кNa с микроэлементами. На фоне минерального питания (P_{60} K_{60}) наиболее выполненными оказались семена, обработанные тенсо-коктейлем M_{1000} -177,5 г. Самая низкая масса 1000 семян оказалась на контрольной группе (без обработки семян) – 131,0 г. Прослеживается зависимость, что внесение удобрений способствует повышению массы 1000 семян. Так, если в среднем по вариантам обработки семян без применения удобрений она составляла 161,8, то при внесении удобрений – 165,4 г.

Урожайность сои зависит от приемов предпосевной обработки семян, удобрений и существенно изменяется по годам. В благоприятном 2007 г. ее урожайность достигла 2,48 т/га, в 2008 г. – 2,14 т/га, а в крайне засушливом 2010 г. – лишь 0,79 т/га (табл. 4).

Таблица 4 Урожайность сои в зависимости от удобрений и предпосевной обработки семян. 2007-2010 гг., т/га

	5 periamineers con s cashermicern er Jacepenn	и и продпосов	non copace	TIND COMPINE	2007 20101	1., 1/1α
	Варианты	2007	2008	2009	2010	Среднее
Без удобрений	Контроль	1,46	0	1,05	0,48	0,74
	Ризоторфин	1,63	1,41	1,29	0,53	1,22
	Тенсо-коктейль	1,60	1,39	1,25	0,51	1,19
	Ризоторфин + тенсо-коктель	1,72	1,46	1,32	0,66	1,29
	ГкNa с микроэлементами	1,76	1,51	1,34	0,62	1,31
	ГкNa с микроэлементами + ризоторфин	1,84	1,60	1,43	0,62	1,37
P 60 + K60	Контроль	2,06	0	1,69	0,60	1,09
	Ризоторфин	2,16	1,87	1,77	0,67	1,62
	Тенсо-коктейль	2,14	1,84	1,75	0,70	1,61
	Ризоторфин + тенсо-коктель	2,34	2,01	2,02	0,78	1,79
	ГкNа с микроэлементами	2,27	1,95	1,93	0,79	1,74
	ГкNа с микроэлементами + ризоторфин	2,48	2,14	2,10	0,73	1,86
HCP0.5.06		0.02	0.03	0.04	0.03	

Выявлено, что внесение удобрений существенно повышает урожайность. Так если без удобрений в среднем по вариантам обработки семян (за 2007-2010 гг.) она составляла 1,19 т/га, то при внесении $P_{60}K_{60}$ урожайность была 1,62 т/га, что на 36,1% выше.

Заключение. Проведенные исследования в 2007-2010 гг. по изучению влияния предпосевной обработки семян сорта Соер 4 показали, что вариант с применением Γ кNa с микроэлементами + ризоторфин на фоне $P_{60}K_{60}$ оказался наиболее продуктивным по урожаю зерна (1,86 т/га), сбору сухого вещества (1,96 т/га) и переваримого протеина (0,74 т/га). Следовательно, при возделывании сои сорта Соер 4 необходимо проводить предпосевную обработку семян препаратами ризоторфин, тенсо-коктейль или Γ кNa с микроэлементами. Посев сои сорта Соер 4 при обработке семян препаратом Γ кNa с микроэлементами + ризоторфин на фоне минерального питания следует считать оптимальным для центральной зоны Самарской области.

Библиографический список

- 1. Столяров О. В. Нут, соя и кормовые бобы в Центральном Черноземье: автореф. дис. ...д-ра. с.-х. наук: 06.01.09: защищена 15.06.05. / О. В. Столяров. Воронеж, 2005. 48 с.
- 2. Даниленко, Ю. П. Соя на орошаемых землях Нижнего Поволжья / Ю. П. Даниленко, В. В. Толоконников, В. И. Толочек // Кормопроизводство. 2005. №2. С. 15-17.
- 3. Павлютина, И. П. Приемы ускорения созревания семян сои / И. П. Павлютина, И. Я. Моисеенко, Б. С. Лихачев // Кормопроизводство. 2008. №1. С. 24-27.
- 4. Проживина, Н. Сельское хозяйство Самарской области в 1989-2004 годах // Агро-Информ. 2005. №75-76. С. 36-38.